
Candidacy Exam

Department of Physics

August 20, 2005

Part I

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-

mation you need is not given, you may define a variable or make a reasonable

physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants:

Avogadro’s number NA 6.022 × 1023 mol−1

Boltzmann’s constant kB 1.381 × 10−23 J K−1

Electron charge magnitude e 1.602 × 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626 × 10−34 J s
h̄ = h/2π 1.055 × 10−34 J s

Speed of light in vacuum c 2.998 × 108 m s−1

Permittivity constant ε0 8.854 × 10−12 F m−1

Permeability constant µ0 1.257 × 10−6 N A−2

Gravitational constant G 6.674 × 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01 × 105 N m−2

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

Electron rest mass me 9.109 × 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673 × 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K



I–1. A reel consists of a cylindrical hub of radius a and two circular end pieces of
radius b. The mass of the complete reel is m and its moment of inertia about
its long axis is I. The reel rests on horizontal table. The end of a light string
is attached to the hub and wrapped around it, and a tension T in a horizontal
direction is applied to the free end of the string, as shown in the figure. The
coefficient of friction is large enough that the reel rolls on the table.

Determine:

(a) the frictional force exerted by the table,

(b) the direction in which the reel begins to move.
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I–2. Two argon atoms are located along the x-axis at x = ±a. Each has an isotropic
polarizability α, such that the atom develops a dipole moment p = αEl when
subject to a local electric field El. Obtain the total dipole moment of the
two-atom system under each of the following conditions:

(a) When a constant electric field of size E0 is imposed along the x-axis.
(E = x̂E0)

(b) When a constant electric field of size E0 is imposed along the y-axis.
(E = ŷE0)

I–3. According to simple kinetic theory, the thermal conductivity of a gas is given
by the expression

K =
1

3
CV λ 〈v〉 , (I–1)

where CV is the heat capacity of the gas at constant volume, per unit vol-
ume, λ is the mean distance between collisions, and 〈v〉 is the mean speed
of the molecules. Approximate all molecules as spherical, and until part (d)
ignore their internal vibrations, and treat the remaining degrees of freedom as
classical.
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(a) Find λ in terms of the number density of the gas and the radius of the
molecules.

(b) How do the quantities on the right-hand-side of Eq. (I–1) depend on tem-
perature T? Deduce the temperature dependence of K.

(c) Regard methane gas as a collection of spherical molecules 1.7 times the
radius of argon atoms. The atomic weight of argon is 40, and the molecular
weight of methane is 16. Estimate the ratio of the thermal conductivity of
methane to argon gas, given that the gases have the same number density.
[Hint: The molar heat capacity at constant volume, cV , is Rf/2 for a gas
with f degrees of freedom.]

(d) Would we expect this ratio to increase or decrease if the methane molecules
were vibrationally excited by collisions.
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I–4. Explain the significance of the photoelectric effect for the discovery of quantum
mechanics.

In a photoelectric experiment monochromatic light of wavelength λ falls on a
potassium surface. It is found that the stopping potential is 1.91 V for λ =
3000 Å, and 0.88 V for λ = 4000 Å. From these data calculate

(a) A value for Planck’s constant given the values for the size of the charge
of the electron e and for the speed of light c that are given in the table at
the front of this exam.

(b) The work function W for potassium.

(c) The threshold frequency νt for potassium.
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Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-

mation you need is not given, you may define a variable or make a reasonable

physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants:

Avogadro’s number NA 6.022 × 1023 mol−1

Boltzmann’s constant kB 1.381 × 10−23 J K−1

Electron charge magnitude e 1.602 × 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626 × 10−34 J s
h̄ = h/2π 1.055 × 10−34 J s

Speed of light in vacuum c 2.998 × 108 m s−1

Permittivity constant ε0 8.854 × 10−12 F m−1

Permeability constant µ0 1.257 × 10−6 N A−2

Gravitational constant G 6.674 × 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01 × 105 N m−2

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

Electron rest mass me 9.109 × 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673 × 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K



II–1. The muon is a particle with mass mµ = 106 MeV/c2 and mean lifetime τµ =
2.20 � s. A beam is made of muons of energy 100 GeV.

(a) By what fraction does the speed of the muons deviate from the speed of
light c?

(b) What is the distance the beam travels before a fraction 1/e of the muons
have decayed?

II–2. An electron is placed at the center of a uniform thin ring of charge q and radius
a. The mass of the electron is m. It is then displaced a small distance x along
the axis of the ring (x � a). Derive a formula for the frequency of small
oscillations.
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II–3. An air bubble of 20 cm3 volume is at the bottom of a lake 40 m deep where the
temperature is 4.0 ◦C. The bubble rises to the surface, which is at a temperature
of 20 ◦C. Take the temperature of the bubble to be the same as that of the
surrounding water and find its volume just before it reaches the surface.
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II–4. Consider a particle of mass m constrained to move in one dimension, along the
x-axis. The particle experiences a harmonic oscillator potential V (x) = 1

2
kx2.

A natural angular frequency for the oscillator is defined by ω =
√

k/m.

The first 6 normalized wave functions (energy eigenfunctions) are shown in
Fig. II–1 on page II–3. Note that the wave functions are expressed as func-
tions of the dimensionless variable y ≡ x

√

mω/h̄ and are normalized so that
∫

∞

−∞
ψ∗

n(y)ψn(y) dy = 1.

(a) Write down the energies associated with each of the first 6 wave functions.

(b) Now assume that the potential V (x) is modified to be infinite for x < 0,

V1(x) =

{

1

2
kx2 for x ≥ 0,

∞ for x < 0.
(II–1)

Determine the three lowest energy eigenvalues for the system when the
potential is V1(x).

(c) Assume the system initially has potential V1(x) and is in the ground state
for that potential. The potential then suddenly changes to V (x). Calcu-
late the probability that the system is in the new ground state after the
sudden change in potential. Note: Take careful note of the details of the

normalization condition that is applied to the wave functions.
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Figure II–1: Plots of wave functions for Problem II–4.
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