
Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 1st, 2020

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number on the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 GeV 1.609× 10−10 J

I–1



Definite integrals: ∫ ∞
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I–1. A particle of mass m = 1 is constrained to the plane (x, y) and is located at
position ~x0 = (2/

√
3, 0) at time t = 0, with velocity ~v0 = (1/

√
3,
√

3). It is

subject to a force that results from the combined potentials Vi(~x) = 1
4
|~x− ~Ri|2,

i = 1, . . . , 4, where ~Ri are unit vectors pointing to the corners of a square with
side length

√
2, centered at the origin and rotated by some angle α relative to

the axes, see figure I-1.

(a) Is the angular momentum conserved in this system?

(b) Determine the minimal and maximal distance of the particle from the
origin.

I–2. A simple harmonic oscillator of frequency ω is initially (at t = 0) in the state

Ψ(x, 0) = N
∞∑
n=0

cnψn(x)
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Figure I-1: Figure for problem I-1.

where ψn(x) are the harmonic oscillator energy eigenstates corresponding to
the n-th energy level and c is a free complex parameter with |c| < 1.

(a) Calculate the normalization constant N
(b) Find the wave function of the system at a later time t

(c) Find the probability that the system is again in the initial state at a later
time t > 0

(d) Compute the expectation value of the energy as a function of time

I–3. Consider a gas of N noninteracting quantum one-dimensional harmonic oscil-
lators in equilibrium in a box of volume V at temperature T . The energy levels
of a single oscillator are

Em = (m+ 1/2)
γ

V

where γ is a constant.

(a) Find the entropy S of the system and the specific heat at constant volume
CV as a function of T .

(b) Determine the equation of state of the gas.

(c) Find the fraction of particles on the m-th energy level.

I–4. Two infinitely-large parallel grounded metal plates are placed at positions
−D/2 and +D/2 on the x-axis, see figure I-4. A point charge Q is placed
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midway in between the plates. Using the method of images, find the surface
charge density on the plate located at +D/2. If you encounter infinite sums,
leave them unevaluated.

x

0 D /2−D/2

Q

Figure I-4: Two infinitely-large parallel grounded metal plates are placed at positions
−D/2 and +D/2 on the x-axis.
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Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number on the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 GeV 1.609× 10−10 J
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Definite integrals: ∫ ∞
0
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xne−xdx = Γ(n+ 1) = n!. (II–2)

Infinite sums: ∑
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Laplacian in spherical polar coordinates (r, θ, φ):
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Laplacian in cylindrical coordinates (r, θ, z):
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II–1. A pendulum is constructed from a pointlike mass m suspended on an ideal
string of length L. Its suspension point is at height H < L above a horizontal
plane. Assume that the plane is frictionless and is such that anything that
collides with it instantly looses its momentum orthogonal to the plane.

(a) The pendulum is released from angle θ, see figure II-1. It undergoes a
perfectly inelastic collision with a pointlike mass M placed on the plane,
at angle θ0 < θ from the vertical through the suspension point. Find the
energy and momentum of resulting particle immediately after the collision,
assuming that the string breaks the instant before the collision.

(b) The particle resulting from the collision climbs on an inclined plane of
height h < H and angle α with friction coefficient µ. Find µ such that
the particle stops precisely at the top of the inclined plane.
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Figure II-1. Figure for problem II-1

II–2. (a) Compute the commutator [~̂x · ~̂p, Ĥ] where Ĥ is the Hamilton operator of
the hydrogen atom.

(b) If ψ is a stationary state of the hydrogen atom, use the result of part (a)
to show that the expected kinetic energy, 〈T̂ 〉 = 〈ψ|T̂ |ψ〉, is related to the
expected potential energy, 〈V̂ 〉 = 〈ψ|V̂ |ψ〉, by 2〈T̂ 〉 = −〈V̂ 〉.

(c) Compute the expected kinetic and potential energies in the n-th energy
eigenstate of hydrogen.

II–3. A box of volume 2V is divided into two halves by a thin wall. The left side
contains an ideal gas at pressure p0 and the right side is initially vacuum. A
small hole of area A is punched in the dividing wall and the temperature is
held constant and the same on both sides. Find the pressure on the left side
of the divide as a function of time.

II–4. Consider two parallel long hollow cylindrical wires of radius a , separated by
distance d� 2a, see figure II-4a. Assume that the voltage and surface currents
are uniform over azimuth of each wire, but can vary over the length of the wire.
The capacitance and inductance per length are

ρC =
πε

ln(d/a)
ρL =

µ

π
ln(d/a) ,

respectively. In vacuum ε = ε0 and µ = µ0.

The pair of wires can be modeled electrically as a chain of small capacitors
and inductors, with capacitors at locations (. . . , x− dx, x, x+ dx, x+ 2dx, . . . )
and inductors between capacitors, see figure II-4b. At a given position x, the
current I(x, t) in the upper wire is equal and opposite to the current in the
lower wire. The voltage V (x, t) is measured above the capacitor, see figure.
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Figure II-4a: Cylindrical wires.

Figure II-4b: LC model for cylindrical wires.

(a) Derive an wave equation of the Voltage wave, V (x, t).

(b) What is the speed of propagation in units of the speed of light?

(c) What would the speed of propagation be if the wires were surrounded by
a region with dielectric constant κ = 2.
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