
Qualifying Exam for Ph.D. Candidacy

Department of Physics

Fall 2022

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number on the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Neutron rest mass mn 1.675× 10−27 kg = 939.6 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
Earth Mass M⊕ 5.972× 1024 kg
1 GeV 1.609× 10−10 J
Earth Mean Radius R⊕ 6371 km
Water specific heat cwater 4184 J kg−1K−1
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I–1. A surprisingly accurate approximation for the motion of a mass m orbiting
a black hole of mass M can be obtained by using ordinary non-relativistic
Newtonian mechanics, but slightly modifying the usual 1/r Keplerian po-
tential to

U(r) = −GmM
r − rg

.

Here G is the gravitational constant and rg is the radius of the black-hole event
horizon. Orbits with r < rg are inside the black hole and so unphysical.
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a) By means of a Lagrangian or otherwise, obtain, for a general potential U(r)
and orbital angular momentum l, an equation for the radius r(t) in the form

mr̈ +
∂Weff(r, l)

∂r
= 0 .

You must give an explicit equation for Weff .

b) Use the potential U(r) given above to find the value of l that will allow a
circular orbit of radius r0 around the black hole.

c) Explain how you would use some property of Weff to determine whether the
circular orbit you found in part (b) is stable or unstable when the particle is
given a small kick that does not alter its orbital angular momentum.

d) Exploit your result from part (b) to show that for the potential U(r) no
circular orbit in the range rg < r0 < 3rg is stable.

I–2. Neutrino oscillation occurs because neutrino mass eigenstates are not the same
as neutrino flavor eigenstates. When a neutrino is created it is always in a
flavor eigenstate — meaning that it is an electron, muon or tau neutrino.

In this problem we will consider only oscillation between the electron neutrino
νe and the muon neutrino νµ.

We will call the mass eigenstates |ν1〉 for mass m1 and |ν2〉 for mass m2. The
two flavor eigenstates are related to the mass eigenstates via a mixing angle θ
as

|νe〉 = cos θ|ν1〉+ sin θ|ν2〉
|νµ〉 = − sin θ|ν1〉+ cos θ|ν1〉 .

When an electron neutrino is created in a source, its state |ψ〉 will be a linear
superposition of the two mass eigenstates with masses m1 and m2. Depending
on how it is created, these mass eigenstates may have different energies E1, E2

and corresponding momenta p1, p2.

a) What are the amplitudes 〈x = 0, t = 0, ν1|ψ〉 and 〈x = 0, t = 0, ν2|ψ〉 for the
electron neutrino to be in each of the m1 and m2 mass eigenstates immediately
after it is created?

b) The neutrino is detected some time t later and a large distance x from the
source. At this distance the space-time part of the wavefunction can be taken
to be a unit-amplitude plane wave. What are the amplitudes 〈x, t, ν1|ψ〉 and
〈x, t, ν2|ψ〉?
c) Suppose that E1 = E2. What is the difference between the momenta p1 and
p2? (The mass difference is very small so the approximation

√
1 + x2 ' 1+x2/2

can be used where appropriate).
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d) With the E1 = E2 assumption, what is the phase difference ∆φ at the
detector between the two amplitudes 〈x, t, ν1|ψ〉 and 〈x, t, ν2|ψ〉? Express your
answer in terms of m1,m2, E, h̄, the speed of light c and the distance x.

e) Use your answer to part (d) to determine the probability Pe(x) that the
detected neutrino remains an electron neutrino, and the probability Pµ(x) that
the neutrino is detected as a muon neutrino.

I–3. A neutron star is essentially a degenerate Fermi gas. Consider the situation
where all the neutrons in the star are ultrarelativistic, i.e. they have energy
ε = pc where the momentum is p = h̄k and k is the wavenumber. Consider
a large cube of volume V filled with N of these ultrarelativistic neutrons in
thermal equilibrium at temperature T .

a) Treat the neutrons as quantum particles in the cube with periodic boundary
conditions. The energy density of states D(ε) is defined by replacing the sum
over states by an integral according to∑

states

(...)→
∫

(...)D(ε)dε ,

where (...) represents any physical quantity of interest. Show that

D(ε) = Aεα ,

where you should determine the quantities A and α. (Do not forget that the
neutron has spin 1/2).

b) Determine the Fermi energy εF (i.e. the chemical potential at temperature
T = 0) in terms of the neutron number density n = N/V and other physical
constants.

c) Write down an integral expression for the average energy density u = U/V of
the system at temperature T, but do not attempt to simplify it. Explain why,
in the limit kBT � εF the expression for u(T = 0) is a good approximation for
u(T ).

d) Evaluate u(T = 0) exactly, writing your final answer in terms of n and εF .

I–4. The figure shows an ideal dipole of dipole moment p that lies in the center of
a grounded conducting spherical shell of inner radius R1 and outer radius R2.

a) Obtain a fully explicit expression for V (r, θ) in the three regions r ≤ R1,
R1 < r < R2, and r > R2.

b) Compute the surface charge density σ(θ) on the inner surface of the grounded
conductor.

I–4



c) Compute the surface charge density σ(θ) on the outer surface of the grounded
conductor

d) Now suppose that in addition to the dipole a point charge q is placed in the
center of the sphere. Repeat your calculation of the surface charge distributions
on the inner and outer surfaces of the conducting shell.

Hint: Recall that the general axisymmetric solution to Laplace’s equation can
be written

V (r, θ) =
∞∑
n=0

(
anr

n +
bn
rn+1

)
Pn(cos θ)

and that b1 = p for an isolated dipole. See the formula sheet for explicit
expressions for the Pn(cos θ).

R1
R2

+
−

Figure I-4: An ideal dipole that lies in the center of a grounded conducting spherical
shell of inner radius R1 and outer radius R2.
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Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number on the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Neutron rest mass mn 1.675× 10−27 kg = 939.6 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
Earth Mass M⊕ 5.972× 1024 kg
1 GeV 1.609× 10−10 J
Earth Mean Radius R⊕ 6371 km
Water specific heat cwater 4184 J kg−1K−1
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Definite integrals:∫ ∞
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Gradient in spherical polar coordinates (r, θ, φ) and n cylindrical coordinates (r, ϕ, z):

~∇ = ~er
∂

∂r
+ ~eθ

1

r

∂

∂θ
+ ~eφ

1

r sin θ

∂

∂φ
, ~∇ = ~er

∂

∂r
+ ~eϕ

1

r

∂

∂ϕ
+ ~ez

∂

∂z
, (II–3)

Laplacian in spherical polar coordinates (r, θ, φ):
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Laplacian in cylindrical coordinates (r, θ, z):
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Series expansions:
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Legendre polynomials
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II–1. On the two ends of a massless rod, we put two masses m1 and m2. m1 is resting
on a horizontal frictionless surface and we keep m2 at a height h. Now we let
m2 fall.

a) Assuming that the mass m1 is held fixed, find the velocity of m2 when it
hits the surface.

b) Assuming that m1 is allowed to slide, find the velocities v1 of m1 and v2 of
m2 at the time when m2 hits the surface.

c) For the setup at point b), find the positions of the two masses when m2 hits
the surface.
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II–2. We consider a particle of mass m in one dimension, bound in the potential well
V (r) given by

V (r) =


+∞ r ≤ 0 ,

−V0 0 < r < r0 , (with V0 > 0)

0 r ≥ r0 .

(II–9)

a) Show that for V0 <
h̄2

2m

(
π

2r0

)2
, this potential has no bound states and that,

at the threshold V0 = h̄2

2m

(
π

2r0

)2
, the potential has a single (marginal)

bound state which is the energy eigenstate ψ0(r) of energy E0 = 0.

We consider now two particles of masses m1 and m2 in three dimensions, bound
by the radial potential V (r) given above with r = |~x1−~x2| the distance between
the two particles. We assume that the potential is at the threshold for having
a single very-weakly-bound state of energy E0 = 0.

b) Use the result of (a), together with the general structure of the ground-
state wave function, Φ0(r, θ, φ) = ψ0(r)/r, to determine the value of the
potential V0 corresponding to the existence of a single (marginal) bound
state of energy E0 = 0. How does V0 depend on m1 and m2?

The deuteron is a bound state of a proton and a neutron. We model the
strong nuclear force between the two as a spherical well with the potential
V (r) given above. The radius r0 of the potential well is assumed to be given
by the Compton wavelength of the pion, r0 ≈ h̄/(mπ0c) ' 1.46 fm.

c) Assuming that the deuteron is a very-weakly-bound state of a proton and a
neutron, determine the depth V0 of the potential well (expressed in MeV).
Check the consistency of this approximation against the observation that
a gamma ray of energy Eγ ' 2.23 MeV breaks the deuteron into a proton
and a neutron.

II–3. We are given a container of gas and are required to determine the equation of
state of that gas. Lab measurements of the isothermal compressibility κT =
− 1
V

(
∂V
∂P

)
T

and the coefficient of isobaric thermal expansion αP = 1
V

(
∂V
∂T

)
P

are

κT =
T

v
f(P ) αP =

R

vP
+

A

vT 2

where T is the temperature, v = V/n is the molar volume, and f(P ) is some
function of pressure P that was not determined by lab measurements.

a) find the function f(P ).

b) find the equation of state V = V (P, T ) of the gas.
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II–4. In a given region of space we have a static magnetic field, which, in a cylindrical
reference frame (r, φ, z), is symmetric around the z axis, i.e. is independent of
φ, and can be written B = B(r, z). The field component along z is Bz(z) =
B0z/L, where B0 and L are constant parameters.

a) Find the radial component Br close to the z axis.

A particle of magnetic polarizability α (such that it acquires an induced mag-
netic dipole moment m = αB in a magnetic field B), is located close to the z
axis.

b) Find the potential energy of the particle in the magnetic field.

c) Assuming α < 0, find equilibrium position(s) for the particle, and find the
frequency of oscillations for small displacements from equilibrium either along
z or r (let M be the mass of the particle).
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