
Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 2nd, 2019

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number on the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 GeV 1.609× 10−10 J
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I–1. A projectile is launched nonrelativistically at an angle of 45 degrees with an
initial kinetic energy E0. At the top of the trajectory the projectile explodes
into two fragments. The explosion imparts an additional mechanical energy
E0 to the system. One fragment, of mass m1, travels straight down with an
unknown velocity v1. Assume that the motion is in the (x, y) plane.

(a) Find the two components of the velocity of the second fragment, of mass
m2, and the magnitude of the velocity of the first fragment

(b) What is the ratio of masses, m1/m2, that maximizes m1.

I–2. Find the velocity of sound, vs, for an ideal spin-1/2 Fermi gas at zero tem-
perature. How does the sound velocity vs compare to the Fermi velocity?
[Hint: It may be useful to recall that v2s = B/ρ, where the bulk modulus is
B = −V (∂P/∂V )T and ρ is the mass density.]
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I–3. Consider a particle of mass m in one dimension, subject to the potential

V (x) =
h̄2

2m
(φ′2(x)− φ′′(x))

where φ is an arbitrary real function and φ′(x) and φ′′(x) are its first and second
derivatives.

(a) Show that the Hamiltonian may be written as

H =
1

2m
(p+ if(x))(p− if(x))

where f is a suitable real function.

(b) Can H have negative eigenvalues?

(c) Show that if E = 0 is an eigenvalue of H corresponding to a bound state
|E = 0〉, then necessarily

(p− if(x))|E = 0〉 = 0 .

(d) If the bound state |E = 0〉 exists, find its wave function ψ0(x).

(e) Can one claim the existence of the bound state with E = 0 for any function
φ(x)?

I–4. The difference of electrostatic potentials between two long coaxial cylindrical
electrodes of inner radius a and outer radius b is V . A uniform magnetic field B
is applied to the cylinders along their axis. If B is strong enough (greater than
a critical value Bc) the electrons emitted with zero velocity from the cathode at
the center cannot reach the anode. Find the strength of the critical magnetic
field Bc. Express your answer in terms of the mass and charge of the electron
(m and qe), V , b, and a.

I–3



Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 2nd, 2019

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number on the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 GeV 1.609× 10−10 J
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Definite integrals: ∫ ∞
0
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Indefinite integrals:∫
x

(x2 + a2)n
dx =

1

2(1− n)

1

(x2 + a2)n−1
n+ c for n 6= 0, 1 (II–3)

Gradient in spherical polar coordinates (r, θ, φ):
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Laplacian in spherical polar coordinates (r, θ, φ):
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Laplacian in cylindrical coordinates (r, θ, z):
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II–1. Two particles of equal masses, m1 = m2 = m, move on a frictionless hor-
izontal surface near a fixed force center at the origin, with potential energy
U1 = (1/2)kr21 and U2 = (1/2)kr22 where r1 and r2 are the distances of the
particles from the force center. In addition they interact with each other via a
potential energy U12 = (1/2)αkr2 where r is the distance between them and α
and k are positive constants (see figure) .

O

~r1
~r2

m~r

~R

m

(a) Write down the Lagrangian. Express it in terms of the center of mass

position ~R and the relative position ~r = ~r1 − ~r2.
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(b) Write down the Lagrange equations for the center of mass position, ~R =
(X, Y ), and relative coordinates, ~r = (x, y).

(c) Solve the Lagrange equations for the above coordinates and describe the
motion.

II–2. A large thin plate is placed in space in a plane normal to the line from the Sun
to the plate. The plate is an ideal black body radiator. The plate is 1.5× 1011

meters from the Sun and the Sun emits radiation with an average power of
3.85× 1026W .

(a) What is the steady state temperature of this single plate?

(b) If an identical second plate is located a short distance behind the first one,
what will the temperature of the first and second plate be? Assume that
the second plate is completely in the shadow of the first and that the only
mechanism for heat transfer is radiation.

II–3. Use the probability current

~j(r, θ, φ) =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)

to compute the magnetic dipole moment of a hydrogen atom in the state
ψ111(r, θ, φ).

II–4. A sphere of radius R and uniform volume charge density ρ has an empty spheri-
cal cavity of radius a located at distance R/2 from the center of the sphere. The
volume of the cavity is entirely within the volume of the sphere (i.e. a < R/4).
Find the electric field everywhere inside the volume of the cavity. Remember
to give both the magnitude and the direction. Assume that the center of the
sphere of radius R is located at the origin and the center of the cavity lies along
the z axis.
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